1.1. История развития вычислительнойтехники


Вычисления в доэлектронную эпоху. Потребность счета предметов у человека возникла еще в доисторические време­на. Древнейший метод счета предметов заключался в сопо­ставлении предметов некоторой группы (например, живот­ных) с предметами другой группы, играющей роль счетного эталона. У большинства народов первым таким эталоном были пальцы (счет на пальцах).

Расширяющиеся потребности в счете заставили людей употреблять другие счетные эталоны (зарубки на палочке, узлы на веревке и т. д.).

Каждый школьник хорошо знаком со счетными палоч­ками, которые использовались в качестве счетного эталона в первом классе.

В древнем мире при счете больших количеств предметов для обозначения определенного их количества (у большин­ства народов — десяти) стали применять новый знак, напри­мер зарубку на другой палочке. Первым вычислительным устройством, в котором стал применяться этот метод, стал абак.

Абак

СчетыАрифмометр

Древнегреческий абак представлял со­бой посыпанную морским песком дощеч­ку. На песке проводились бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая — десяткам и т. д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующий разряд. Римляне усовершенствовали абак, перейдя от песка и камешков к мраморным доскам с выточенными желобками и мраморны­ми шариками (рис. 1.1).

По мере усложнения хозяйственной деятельности и социальных отношений (де­нежных расчетов, задач измерений расстоя­ний, времени, площадей и т. д.) возникла потребность в арифметических вычислени­ях. Для выполнения простейших арифмети­ческих операций (сложения и вычитания) стали использовать абак, а по прошествии веков — счеты (рис. 1.2).

Развитие науки и техники тре­бовало проведения все более слож­ных математических расчетов, и в XIX веке были изобретены механи­ческие счетные машины — ариф­мометры (рис. 1.3). Арифмометры могли не только складывать, вычи­тать, умножать и делить числа, но и запоминать промежуточные ре­зультаты, печатать результаты вы­числений и т. д.

В середине XIX века английский математик Чарльз Бэббидж выдвинул идею создания программно управляемой счетной машины, имеющей арифметическое устройство, устройство управления, а также устройства ввода и печати.

Аналитическую машину Бэббиджа (прообраз современных компьютеров) по сохранившимся описаниям и чертежам построи­ли энтузиасты из Лондонского музея науки (рис. 1.4). Аналити­ческая машина состоит из четы­рех тысяч стальных деталей и весит три тонны.

Вычисления производились Аналитической машиной в соот­ветствии с инструкциями (про­граммами), которые разработала леди Ада Лавлейс (дочь англий­ского поэта Джорджа Байрона). Графиню Лавлейс считают первым программистом, и в ее честь назван язык програм­мирования АДА.

Перфокарты

Первыми носителями информации, которые использова­лись для хранения программ, были перфокарты (рис. 1.5). Программы записывались на перфокарты путем пробития в определенном порядке от­верстий в плотных бумажных кар­точках. Затем перфокарты помеща­лись в Аналитическую машину, которая считывала расположение от­верстий и выполняла вычислитель­ные операции в соответствии с задан­ной программой.

Развитие электронно-вычислительной техники

ЭВМ первого поколения. В 40-е годы XX века начались работы по созданию первых электронно-вычислительных машин, в которых на смену механическим деталям пришли электронные лампы (см. таблицу в конце параграфа). ЭВМ первого поколения требовали для своего размещения боль­ших залов, так как в них использовались десятки тысяч электронных ламп. Такие ЭВМ создавались в единичных эк­земплярах, стоили очень дорого и устанавливались в круп­нейших научно-исследовательских центрах.

В 1945 году в США был построен ENIAC (Electronic Numerical Integrator and Computer — электронный числовой интегратор и калькулятор), а в 1950 году в СССР была созда­на МЭСМ (Малая Электронная Счетная Машина) (рис. 1.6).

МЭСМ

ЭВМ первого поколения могли выполнять вычисления со скоростью несколько тысяч операций в секунду, последо­вательность выполнения которых задавалась программами. Программы писались на машин­ном языке, алфавит которого со­стоял из двух знаков: 1 и 0.

Программы вводились в ЭВМ с помощью перфокарт или перфо­лент (рис. 1.7), причем наличие отверстия на перфокарте соответ­ствовало знаку 1, а его отсутст­вие — знаку 0.

Перфолента

Результаты вычислений выводились с помощью печатаю­щих устройств в форме длинных последовательностей нулей и единиц. Писать программы на машинном языке и расшиф­ровывать результаты вычислений могли только высококва­лифицированные программисты, понимавшие язык первых ЭВМ.

ЭВМ второго поколения. В 60-е годы XX века были со­зданы ЭВМ второго поколения, основанные на новой эле­ментной базе — транзисторах (см. таблицу в конце парагра­фа), которые имеют в десятки и сотни раз меньшие размеры и массу, более высокую надежность и потребляет значитель­но меньшую электрическую мощность, чем электронные лампы. Такие ЭВМ производились малыми сериями и уста­навливались в крупных научно-исследовательских центрах и ведущих высших учебных заведениях.

В СССР в 1967 году вступила в строй наиболее мощная в Европе ЭВМ второго поколения БЭСМ-6 (Большая Электрон­ная Счетная Машина), которая могла выполнять 1 миллион операций в секунду (рис. 1.8).

БЭСМ-6

В БЭСМ-6 использовалось 260 тысяч транзисторов, устройства внешней памяти на магнитных лентах для хра­нения программ и данных, а также алфавитно-цифровые пе­чатающие устройства для вывода результатов вычислений.

Работа программистов по разработке программ сущес­твенно упростилась, так как стала проводиться с использо­ванием языков программирования высокого уровня (Алгол, Бейсик и др.).

ЭВМ третьего поколения. Начиная с 70-х годов прошло­го века, в качестве элементной базы ЭВМ третьего поколе­ния стали использовать интегральные схемы (см. таблицу в конце параграфа). В интегральной схеме (маленькой полу­проводниковой пластине) могут быть плотно упакованы ты­сячи транзисторов, каждый из которых имеет размеры, сравнимые с толщиной человеческого волоса.

ЭВМ на базе интегральных схем стали гораздо более компактными, быстродействующими и дешевыми. Такие мини-ЭВМ (рис. 1.9) произво­дились большими сериями и были доступными для большинства науч­ных институтов и высших учебных заведений.

Персональные компьютеры. Развитие высоких техноло­гий привело к созданию больших интегральных схем — БИС (см. таблицу в конце параграфа), включающих десятки тысяч транзисторов. Это позволило приступить к выпуску компактных персональных компьютеров, доступных для массового пользователя.

Первым персональным компью­тером был Apple II (рис. 1.10) («де­душка» современных компьютеров Macintosh), созданный в 1977 году. В 1982 году фирма IBM приступила к изготовлению персональных компью­теров IBM PC («дедушек» современ­ных IBM-совместимых компьютеров).

Современные персональные ком­пьютеры компактны и обладают в ты­сячи раз большим быстродействием по сравнению с первыми персональ­ными компьютерами (могут выпол­нять несколько миллиардов операций в секунду). Ежегодно в мире производится почти 200 миллионов компьютеров, доступных по цене для массового потребителя.

Персональные компьютеры могут быть различного ко­нструктивного исполнения: настольные, портативные (ноут­буки) и карманные (наладонники) (рис. 1.11).

image023

Контрольные вопросы

Используя текст параграфа и таблицу, ответьте на вопросы:

  • Почему современные персональные компьютеры в сотни раз меньше, но при этом в сотни тысяч раз быстрее ЭВМ первого по­коления?