- Подробности
- Опубликовано 22.12.2013 12:18
- Просмотров: 4546
1.1. История развития вычислительнойтехники
Вычисления в доэлектронную эпоху. Потребность счета предметов у человека возникла еще в доисторические времена. Древнейший метод счета предметов заключался в сопоставлении предметов некоторой группы (например, животных) с предметами другой группы, играющей роль счетного эталона. У большинства народов первым таким эталоном были пальцы (счет на пальцах).
Расширяющиеся потребности в счете заставили людей употреблять другие счетные эталоны (зарубки на палочке, узлы на веревке и т. д.).
Каждый школьник хорошо знаком со счетными палочками, которые использовались в качестве счетного эталона в первом классе.
В древнем мире при счете больших количеств предметов для обозначения определенного их количества (у большинства народов — десяти) стали применять новый знак, например зарубку на другой палочке. Первым вычислительным устройством, в котором стал применяться этот метод, стал абак.
Древнегреческий абак представлял собой посыпанную морским песком дощечку. На песке проводились бороздки, на которых камешками обозначались числа. Одна бороздка соответствовала единицам, другая — десяткам и т. д. Если в какой-то бороздке при счете набиралось более 10 камешков, их снимали и добавляли один камешек в следующий разряд. Римляне усовершенствовали абак, перейдя от песка и камешков к мраморным доскам с выточенными желобками и мраморными шариками (рис. 1.1).
По мере усложнения хозяйственной деятельности и социальных отношений (денежных расчетов, задач измерений расстояний, времени, площадей и т. д.) возникла потребность в арифметических вычислениях. Для выполнения простейших арифметических операций (сложения и вычитания) стали использовать абак, а по прошествии веков — счеты (рис. 1.2).
Развитие науки и техники требовало проведения все более сложных математических расчетов, и в XIX веке были изобретены механические счетные машины — арифмометры (рис. 1.3). Арифмометры могли не только складывать, вычитать, умножать и делить числа, но и запоминать промежуточные результаты, печатать результаты вычислений и т. д.
В середине XIX века английский математик Чарльз Бэббидж выдвинул идею создания программно управляемой счетной машины, имеющей арифметическое устройство, устройство управления, а также устройства ввода и печати.
Аналитическую машину Бэббиджа (прообраз современных компьютеров) по сохранившимся описаниям и чертежам построили энтузиасты из Лондонского музея науки (рис. 1.4). Аналитическая машина состоит из четырех тысяч стальных деталей и весит три тонны.
Вычисления производились Аналитической машиной в соответствии с инструкциями (программами), которые разработала леди Ада Лавлейс (дочь английского поэта Джорджа Байрона). Графиню Лавлейс считают первым программистом, и в ее честь назван язык программирования АДА.
Первыми носителями информации, которые использовались для хранения программ, были перфокарты (рис. 1.5). Программы записывались на перфокарты путем пробития в определенном порядке отверстий в плотных бумажных карточках. Затем перфокарты помещались в Аналитическую машину, которая считывала расположение отверстий и выполняла вычислительные операции в соответствии с заданной программой.
Развитие электронно-вычислительной техники
ЭВМ первого поколения. В 40-е годы XX века начались работы по созданию первых электронно-вычислительных машин, в которых на смену механическим деталям пришли электронные лампы (см. таблицу в конце параграфа). ЭВМ первого поколения требовали для своего размещения больших залов, так как в них использовались десятки тысяч электронных ламп. Такие ЭВМ создавались в единичных экземплярах, стоили очень дорого и устанавливались в крупнейших научно-исследовательских центрах.
В 1945 году в США был построен ENIAC (Electronic Numerical Integrator and Computer — электронный числовой интегратор и калькулятор), а в 1950 году в СССР была создана МЭСМ (Малая Электронная Счетная Машина) (рис. 1.6).
ЭВМ первого поколения могли выполнять вычисления со скоростью несколько тысяч операций в секунду, последовательность выполнения которых задавалась программами. Программы писались на машинном языке, алфавит которого состоял из двух знаков: 1 и 0.
Программы вводились в ЭВМ с помощью перфокарт или перфолент (рис. 1.7), причем наличие отверстия на перфокарте соответствовало знаку 1, а его отсутствие — знаку 0.
Результаты вычислений выводились с помощью печатающих устройств в форме длинных последовательностей нулей и единиц. Писать программы на машинном языке и расшифровывать результаты вычислений могли только высококвалифицированные программисты, понимавшие язык первых ЭВМ.
ЭВМ второго поколения. В 60-е годы XX века были созданы ЭВМ второго поколения, основанные на новой элементной базе — транзисторах (см. таблицу в конце параграфа), которые имеют в десятки и сотни раз меньшие размеры и массу, более высокую надежность и потребляет значительно меньшую электрическую мощность, чем электронные лампы. Такие ЭВМ производились малыми сериями и устанавливались в крупных научно-исследовательских центрах и ведущих высших учебных заведениях.
В СССР в 1967 году вступила в строй наиболее мощная в Европе ЭВМ второго поколения БЭСМ-6 (Большая Электронная Счетная Машина), которая могла выполнять 1 миллион операций в секунду (рис. 1.8).
В БЭСМ-6 использовалось 260 тысяч транзисторов, устройства внешней памяти на магнитных лентах для хранения программ и данных, а также алфавитно-цифровые печатающие устройства для вывода результатов вычислений.
Работа программистов по разработке программ существенно упростилась, так как стала проводиться с использованием языков программирования высокого уровня (Алгол, Бейсик и др.).
ЭВМ третьего поколения. Начиная с 70-х годов прошлого века, в качестве элементной базы ЭВМ третьего поколения стали использовать интегральные схемы (см. таблицу в конце параграфа). В интегральной схеме (маленькой полупроводниковой пластине) могут быть плотно упакованы тысячи транзисторов, каждый из которых имеет размеры, сравнимые с толщиной человеческого волоса.
ЭВМ на базе интегральных схем стали гораздо более компактными, быстродействующими и дешевыми. Такие мини-ЭВМ (рис. 1.9) производились большими сериями и были доступными для большинства научных институтов и высших учебных заведений.
Персональные компьютеры. Развитие высоких технологий привело к созданию больших интегральных схем — БИС (см. таблицу в конце параграфа), включающих десятки тысяч транзисторов. Это позволило приступить к выпуску компактных персональных компьютеров, доступных для массового пользователя.
Первым персональным компьютером был Apple II (рис. 1.10) («дедушка» современных компьютеров Macintosh), созданный в 1977 году. В 1982 году фирма IBM приступила к изготовлению персональных компьютеров IBM PC («дедушек» современных IBM-совместимых компьютеров).
Современные персональные компьютеры компактны и обладают в тысячи раз большим быстродействием по сравнению с первыми персональными компьютерами (могут выполнять несколько миллиардов операций в секунду). Ежегодно в мире производится почти 200 миллионов компьютеров, доступных по цене для массового потребителя.
Персональные компьютеры могут быть различного конструктивного исполнения: настольные, портативные (ноутбуки) и карманные (наладонники) (рис. 1.11).
Контрольные вопросы
Используя текст параграфа и таблицу, ответьте на вопросы:
- •Почему современные персональные компьютеры в сотни раз меньше, но при этом в сотни тысяч раз быстрее ЭВМ первого поколения?