- Подробности
- Опубликовано 05.09.2012 05:32
- Просмотров: 14979
1.3. Кодирование звуковой информации
Временная дискретизация звука. Звук представляет собой звуковую волну с непрерывно меняющейся амплитудой и частотой. Чем больше амплитуда сигнала, тем он громче для человека, чем больше частота сигнала, тем выше тон. Для того чтобы компьютер мог обрабатывать звук, непрерывный звуковой сигнал должен быть превращен в последовательность электрических импульсов (двоичных нулей и единиц).
В процессе кодирования непрерывного звукового сигнала производится его временная дискретизация. Непрерывная звуковая волне разбивается на отдельные маленькие временные участки (см. рис. 1.2), причем для каждого тако
го участка устанавливается определенная величина амплитуды. Непрерывная зависимость амплитуды сигнала от времениA{t)заменяется на дискретную последовательность уровней громкости. На графике это выглядит как замена гладкой кривой на последовательность «ступенек».
Глубина кодирования. Каждой «ступеньке» присваивается определенное значение уровня громкости звука. У ров ни громкости звука можно рассматривать как набор возможных состояний N,для кодирования которых необходимо определенное количество информации I, которое называется глубиной кодирование звука.
Глубина кодирования звука — это количество информации, которое необходимо для кодирования дискретных уровней громкости цифрового звука.
Если известна глубина кодирования, то количество уровней громкости цифрового звука можно рассчитать по формуле (1.1). Пусть глубина кодирования звука составляет 16 битов, тогда количество уровней громкости звука равно:
N = 2J=216 = 65 536.
Частота дискретизации. Качество цифрового звука зависит от количества измерений уровня громкости звука в единицу времени, т. е. частоты дискретизации. Чем большее количество измерений производится за 1 секунду (чем больше частота дискретизации), тем точнее «лесенка» цифрового звукового сигнала повторяет кривую аналогового сигнала.
Частота дискретизации звука — это количество измерений громкости звука за одну секунду.
Качество оцифрованного звука. Чем больше глубина и частота дискретизации звука, тем более качественных будет звучание оцифрованного звука Самое низкое качество оцифрованного звука, соответствующее качеству телефонной связи, будет при частоте дискретизации 8000 раз в секунду, глубине дискретизации 8 битов и записи одной звуковой дорожки (режим моно). Самое высокое качество оцифрованного звука, соответствующее качеству аудио-CD, будет при частоте дискретизации 48 ООО раз в секунду, глубине дискретизации 16 битов и записи двух звуковых дорожек (режим стерео).
Необходимо помнить, что чем выше качество цифрового звук, тем больше информационный объем высококачественного звукового файла. Можно оценить инфор«ационный объем цифрового стереозвукового файла длительностью звучания 1 секунда при среднем качестве звука (16 битов, 48 ООО измерений в секунду). Для этого глубину кодирования необходимо умножить на количество измерений в 1 секунду и умножить на 2 (стереозвук):
16 бит х 48 ООО х 2 = 1 536 ООО бит = = 192 ООО байт = 187,5 Кбайт.
Звуковые редакторы. Звуковые редакторы позволяют не только записывать и воспроизводить звук, но и редактировать его. Оцифрованный звук представляется в звуковых редакторах в наглядной форме, поэтому операции копирования, перемещения и удаления частей звуковой дорожки можно легко осуществлять с помощью мыши. Кроме того, можно накладывать звуковые дорожки друг на друга (микшировать звуки) и применять различные акустические эффекты (эхо, воспроизведение в обратном направлении и др.).
Звуковые редакторы позволяют изменять качество цифрового звука и объем звукового файла путем изменения частоты дискретизации и глубины кодирования. Оцифрованный звук можно сохранять без сжатия в звуковых файлах в универсальном формате WAV, в формате со сжатием МРЗ.
Контрольные вопросы
1.В чем состоит принцип двоичного кодирования звука?
2.От каких параметров зависит качество двоичного кодирования звука?